quite a different order of ideas - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

quite a different order of ideas - перевод на русский

CARDINALITY OF A GROUP, OR WHERE THE ELEMENT A OF A GROUP IS THE SMALLEST POSITIVE INTEGER M SUCH THAT AM = E
Order of a group; Group order; Order (group); Order of a group element; Finite order

quite a different order of ideas      
совсем другие мысли
finite order         

математика

конечный порядок

knightly order         
  • Spanish]] orders of chivalry. In the centre, the [[Order of the Golden Fleece]], 1820
  • Investiture of three new members of the Order of the Knot (miniature from the order's statutes, 1352/4).
ORDER, CONFRATERNITY OR SOCIETY OF KNIGHTS
Knightly orders; Knightly order; Orders of Chivalry; Orders of Knighthood; Orders of knighthood; Orders of chivalry; Order of knighthood; Chivalric orders; Chivalric Orders; Dynastical order; Confraternal order; Knightly Orders; Order of Chivalry; Knightly Order; Chivalric order
рыцарский орден

Определение

КОФЕРМЕНТ А
(КоА) , сложное природное соединение, один из важнейших коферментов. В живых клетках участвует в реакциях окисления, синтеза жирных кислот, липидов и др.

Википедия

Order (group theory)

In mathematics, the order of a finite group is the number of its elements. If a group is not finite, one says that its order is infinite. The order of an element of a group (also called period length or period) is the order of the subgroup generated by the element. If the group operation is denoted as a multiplication, the order of an element a of a group, is thus the smallest positive integer m such that am = e, where e denotes the identity element of the group, and am denotes the product of m copies of a. If no such m exists, the order of a is infinite.

The order of a group G is denoted by ord(G) or |G|, and the order of an element a is denoted by ord(a) or |a|, instead of ord ( a ) , {\displaystyle \operatorname {ord} (\langle a\rangle ),} where the brackets denote the generated group.

Lagrange's theorem states that for any subgroup H of a finite group G, the order of the subgroup divides the order of the group; that is, |H| is a divisor of |G|. In particular, the order |a| of any element is a divisor of |G|.

Как переводится quite a different order of ideas на Русский язык